Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. An electronic version of the paper may be downloaded
Terms of use:
Documents in EconStor may• from the SSRN website:www. SSRN.com • from the RePEc website:www.RePEc.org• from the CESifo website:T www. CESifo-group.org/wpT CESifo Working Paper No. 2387 A High-Low Model of Daily Stock Price Ranges
AbstractWe observe that daily highs and lows of stock prices do not diverge over time and, hence, adopt the cointegration concept and the related vector error correction model (VECM) to model the daily high, the daily low, and the associated daily range data. The in-sample results attest the importance of incorporating high-low interactions in modeling the range variable. In evaluating the out-of-sample forecast performance using both mean-squared forecast error and direction of change criteria, it is found that the VECM-based low and high forecasts offer some advantages over some alternative forecasts. The VECM-based range forecasts, on the other hand, do not always dominate -the forecast rankings depend on the choice of evaluation criterion and the variables being forecasted.JEL Code: C32, C53, G10.Keywords: daily high, daily low, VECM model, forecast performance, implied volatility. Excellent research assistance was provided by Bonnie Wong. The views contained herein are solely those of the authors, and do not necessarily represent those of the institutions they are associated with.
Yan-Leung Cheung Department of Economics and
IntroductionData on daily ranges of various financial prices are quite widely available. It is conceived that volatility is high (low) when the daily range is wide (narrow). Parkinson (1980) shows that, under certain assumptions, the price range is a more efficient volatility estimator than, say, the commonly used return-based estimator. Modifications and variations of the original Parkinson result are provided by, for example, Beckers (1983), Garman and Klass, (1980), Kunitomo (1992), Rogers and Satchell (1991), and Yang and Zhang (2000). Recently, there are a few studies investigating the stochastic properties of financial price ranges and using the price range as an input in various GARCH and stochastic volatility models to exploit its information content (Alizadeh et. al., 2002;Brandt and Diebold, 2003;Brunetti and Lildholdt 2005;Chou, 2005;Engle and Gallo, 2003;Fernandes et. al., 2005;Gallant et. al., 1999). Usually, the price range is touted as an efficient proxy for volatility, which is a crucial element in the modern f...