We assumed the situation where an eruption column had been formed by the explosive Plinian eruption from Mt. Baekdu and that the collapse of eruption column had caused pyroclastic density currents to occur. Based on this assumption, we simulated by using a Titan2D model. To find out about the range of the impacts of pyroclastic density currents by volcanic eruption scenarios, we studied the distance for the range of the impacts by VEIs. To compare the results by each volcanic eruption scenario, we set the location of the vent on the 8-direction flank of the outer rim and on the center of the caldera, the internal friction angle of the pyroclastic density currents as 35 o , the bed friction angle as 16 o . We set the pile height of column collapse and the vent diameter with various VEIs. We properly assumed the height of the column collapse, the diameter of the vent, the initial rates of the column collapse and the simulation period, based on the VEIs, gravity and the volume of the collapsed volcanic ash. According to the comparative analysis of the simulation results based on the increase of the eruption, the higher VEI by the increase of eruption products, the farther the pyroclastic density currents disperse. To the northwest from the vent on the northeast slope of the outer rim of the caldera, the impact range was 3.3 km, 4.6 km, 13.2 km, 24.0 km, 50.2 km, 83.4 km or more from VEI=2 to VEI=7, respectively. Once the database has been fully constructed, it can be used as a very important material in terms of disaster prevention and emergency management, which aim to minimize human and material damages in the vicinity of Mt. Baekdu when its eruption causes the pyroclastic density currents to occur.