In order to understand the dynamics of chemical reactions in general, detailed information on electronic, structural and kinetic properties is required. The key questions on how chemical reactions actually occur can in many cases only be answered in terms of information obtained from kinetic studies. In conventional kinetic studies of chemical reactions in solution, the variables usually selected include concentration, acidity, solvent, and temperature. In recent years, pressure has become a n additional selected variable in such studies. It enables the measurement of the volume of activation and the construction of reaction volume profiles and thus assists in the elucidation of the underlying mechanism; it also completes the comprehension of reaction kinetics by adding another kinetic parameter that the suggested reaction mechanism must account for. Furthermore, the volume of activation is the only transition state property that can be correlated with the corresponding ground state property in an experimentally simple manner. In this paper, the insights so gained in our understanding of the dynamics of reactions involving coordination complexes will be presented. Such reactions are of fundamental interest to chemists since they often form the basis of catalytic, biological, environmental and energy related processes. Any additional information that will add to the understanding of the reaction dynamics is therefore of exceptional importance.