The mixing process in a mechanically agitated vessel is a widespread phenomenon which plays an important role among industrial processes. In that process, one of the crucial parameters, the mixing efficiency, depends on a large number of geometrical factors, as well as process parameters and complex interactions between the phases which are still not well understood. In the last decade, large progress has been made in optimisation, construction and numerical and experimental analysis of mechanically agitated vessels. In this review, the current state in this field has been presented. It shows that advanced computational fluid dynamic techniques for multiphase flow analysis with reactions and modern experimental techniques can be used with success to analyse in detail mixing features in liquid-liquid, gas-liquid, solid-liquid and in more than two-phase flows. The objective is to show the most important research recently carried out.