In this work we characterize the unusual nonlinear dynamics of the resonance response, exhibited by our NbN superconducting microwave resonators, using different operating conditions. The nonlinear dynamics, occurring at relatively low input powers (2-4 orders of magnitude lower than Nb), and which include among others, bifurcations in the resonance curve, hysteresis loops and resonance frequency shift, are measured herein using varying temperature, applied magnetic field, white noise and rapid frequency sweeps. Based on these measurement results, we consider a hypothesis according to which Josephson junctions forming weak links at the boundaries of the NbN grains are responsible for the observed behavior, and we show that most of the experimental results are qualitatively consistent with such hypothesis.