Moulinec and Suquet introduced FFT-based homogenization in 1994, and 20 years later, their approach is still effective for evaluating the homogenized properties arising from the periodic cell problem. This paper builds on the author's (2013) variational reformulation approximated by trigonometric polynomials establishing two numerical schemes: Galerkin approximation (Ga) and a version with numerical integration (GaNi). The latter approach, fully equivalent to the original Moulinec-Suquet algorithm, was used to evaluate guaranteed upper-lower bounds on homogenized coefficients incorporating a closed-form doublegrid quadrature. Here, these concepts, based on the primal and dual formulations, are employed for the Ga scheme. For the same computational effort, the Ga outperforms the GaNi with more accurate guaranteed bounds and more predictable numerical behaviors. The quadrature technique leading to block-sparse linear systems is extended here to materials defined via high-resolution images in a way that allows for effective treatment using the FFT. Memory demands are reduced by a reformulation of the double-grid scheme to the original grid scheme using FFT shifts. Minimization of the bounds during iterations of conjugate gradients is effective, particularly when incorporating a solution from a coarser grid. The methodology presented here for the scalar linear elliptic problem could be extended to more complex frameworks.