The FFT-based homogenization method of Moulinec-Suquet has recently emerged as a powerful tool for computing the macroscopic response of complex microstructures for elastic and inelastic problems. In this work, we generalize the method to problems discretized by trilinear hexahedral elements on Cartesian grids and physically nonlinear elasticity problems. We present an implementation of the basic scheme that reduces the memory requirements by a factor of four and of the conjugate gradient scheme that reduces the storage necessary by a factor of nine compared with a naive implementation. For benchmark problems in linear elasticity, the solver exhibits mesh- and contrast-independent convergence behavior and enables the computational homogenization of complex structures, for instance, arising from computed tomography computed tomography (CT) imaging techniques. There exist 3D microstructures involving pores and defects, for which the original FFT-based homogenization scheme does not converge
In order to take structural anisotropies of a given composite and different shapes of its unit cell into account, we generalize the Basic Scheme in homogenization by Moulinec and Suquet to arbitrary sampling lattices and tilings of the d-dimensional Euclidean space. We employ a Fourier transform for these lattices by introducing the corresponding set of sample points, the so called pattern, and its frequency set, the generating set, both representing the anisotropy of both the shape of the unit cell and the chosen preferences in certain sampling directions. In several cases, this Fourier transform is of lower dimension than the space itself. For the so called rank-1-lattices it even reduces to a one-dimensional Fourier transform having the same leading coefficient as the fastest Fourier transform implementation available. We illustrate the generalized Basic Scheme on an anisotropic laminate and a generalized ellipsoidal Hashin structure. For both we give an analytical solution to the elasticity problem, in two-and three dimensions, respectively. We then illustrate the possibilities of choosing a pattern. Compared to classical grids this introduces both a reduction of computation time and a reduced error of the numerical method. It also allows for anisotropic subsampling, i.e. choosing a sub lattice of a pixel or voxel grid based on anisotropy information of the material at hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.