Defect pattern analysis of wafer bin maps (WBMs) is an important means of identifying process problems. Recently, automated analysis methods using machine learning or deep learning have been studied as alternatives to manual classification by engineers. In this paper, we propose a method to improve the feature extraction performance of defect patterns by transforming the polar coordinate system instead of the existing WBM image input. To reduce the variability of the location representation, defect patterns in the Cartesian coordinate system, where the location of the distributed defect die is not constant, were converted to a polar coordinate system. The CNN classifier, which uses polar coordinate transformed input, achieved a classification accuracy of 91.3%, which is 4.8% better than the existing WBM image-based CNN classifier. Additionally, a tree-structured classifier model that sequentially connects binary classifiers achieved a classification accuracy of 94%. The method proposed in this paper is also applicable to the defect pattern classification of WBMs consisting of different die sizes than the training data. Finally, the paper proposes an automated pattern classification method that uses individual classifiers to learn defect types and then applies ensemble techniques for multiple defect pattern classification. This method is expected to reduce labor, time, and cost and enable objective labeling instead of relying on subjective judgments of engineers.