The semiconductor manufacturing process involves long and complex activities, with intensive use of resources. Producers compete through the introduction of new technologies for increasing yield and reducing costs. So, yield improvement is becoming increasingly important since advanced production technologies are complex and interrelated. In particular, Wafer Bin Maps (WBMs) presenting specific fault models provide crucial information to keep track of process problems in semiconductor manufacturing. Production control is often based on the “judgement” of expert engineers who, however, carry out the analysis of map templates through simple visual exploration. In this way, existing studies are subjective, time consuming, and are also limited by the capacity of human recognition. This study proposes a network-based data mining approach, which integrates correlation graphs with clustering analysis to quickly extract patterns from WBMs and then bind them to manufacturing defects. An empirical study has been conducted on real production data for validating the proposed clustering algorithm, which showed a perfect correspondence between the malfunction patterns found by the algorithm and those discovered by human experts, so confirming the validity of our approach in its ability of correctly identifying actual defective patterns to help improving production yield.