Granivorous rodents have been traditionally regarded as antagonistic seed predators. Agoutis (Dasyprocta spp.), however, have also been recognized as mutualistic dispersers of plants because of their role as scatter-hoarders of seeds, especially for large-seeded species. A closer look shows that such definitions are too simplistic for these Neotropical animals because agoutis can influence plant communities not only through seed dispersal of large seeds but also through predation of small seeds and seedlings, evidencing their dual role. Herein, we summarize the literature on plant-agouti interactions, decompose agouti seed dispersal into its quantitative and qualitative components, and discuss how environmental factors and plant traits determine whether these interactions result in mutualisms or antagonisms. We also look at the role of agoutis in a community context, assessing their effectiveness as substitutes for extinct megafaunal frugivores and comparing their ecological functions to those of other extant dispersers of large seeds. We also discuss how our conclusions can be extended to the single other genus in the Dasyproctidae family (Myoprocta). Finally, we examine agoutis' contribution to carbon stocks and summarize current conservation threats and efforts. We recorded 164 interactions between agoutis and plants, which were widespread across the plant phylogeny, confirming that agoutis are generalist frugivores. Seed mass was a main factor determining seed hoarding probability of plant species and agoutis were found to disperse larger seeds than other large-bodied frugivores. Agoutis positively contributed to carbon storage by preying upon seeds of plants with lower carbon biomass and by dispersing species with higher biomass. This synthesis of plant-agouti interactions shows that ecological services provided by agoutis to plant populations and communities go beyond seed dispersal and predation, and we identify still unanswered questions. We hope to emphasise the importance of agoutis in Neotropical forests.