Weed interference limits switchgrass (Panicum virgatum L.) establishment from seed. Our objectives were to determine the effect of selected post-plant, preemergence herbicides on stand establishment and subsequent biomass yields of adapted upland switchgrass cultivars grown in three environments in the Central and Northern Great Plains. A separate experiment was conducted in eastern Nebraska to determine if there were any differences among switchgrass ecotypes for herbicide tolerance to the optimal herbicide combination. Herbicides applied immediately after planting were different concentrations of atrazine [Aatrex 4L \ ; 6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine], quinclorac (Paramount \ ; 3,7-Dichloro-8-quinolinecarboxylic acid), atrazine+quinclorac, imazapic {Plateau \ ; 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid}, and quinclorac+ imazapic. Herbicide efficacy was determined by measuring stand frequency of occurrence and biomass yield the year after establishment. The application of quinclorac plus atrazine resulted in acceptable stands and high biomass yields. Imazapic often reduced switchgrass stands in comparison to the nontreated control and is not recommended for switchgrass establishment. In the multi-state trials, the herbicide by cultivar interaction was not significant for stands or biomass yields, indicating that the effects of herbicides on switchgrass stands and biomass yields were consistent over the upland cultivars used in the trials. No differences were detected among switchgrass lowland and upland ecotypes for tolerance to atrazine and quinclorac. Quinclorac, which provides effective control of grassy weeds, and herbicides such as atrazine which provide good broadleaf weed control are an excellent herbicide combination for establishing switchgrass for biomass production in the Great Plains and the Midwest.