In the contemporary era, there has been a notable surge in the systematic utilization of therapeutic drugs that exhibit stimulus-responsive drug release patterns in specific target areas. However, challenges such as premature drug release and limited biocompatibility persist. To address these issues, the application of a lipid coating on mesoporous silica nanoparticles (MSNs) has emerged as a promising strategy. This lipid coating not only enhances the stability and biocompatibility of nanocarriers but also facilitates targeted drug delivery to diseased cells while minimizing drug release throughout the body. MSNs, renowned for their unique attributes including high porosity, morphology, and controllable pore size, have been widely recognized as suitable platforms for drug/gene delivery systems. Furthermore, graphene-based nanomaterials such as graphene oxide and reduced graphene oxide have garnered significant interest in the fields of biology and biomedicine. These materials possess exceptional characteristics such as a large surface area, distinct surface properties, high biocompatibility, and pH sensitivity, making them ideal candidates for incorporating drugs, genes, photosensitizers, and other cargo to design innovative drug delivery systems. This study aims to emphasize the ongoing efforts and advancements in enhancing the capacity and versatility of nanocomposites comprising graphene MSN composites for applications in drug delivery.