The current study determined the carboxymethyl cellulose (CMC) degradation efficiency, dominant microbial flora, eubacteria and archaebacteria characteristics, and expression levels of genes cel5A, cel6B, and bglC in an anaerobic/aerobic bio-reactor consisting of two-stage UASB (U1 and U2) and two-stage BAF (B1 and B2). The results showed that under three CMC loads, the CMC degradation efficiency of the UASB-BAF system was 91.25%, 80.44%, and 78.73%, respectively. At higher CMC loads, the degradation of cellulose and transformation to cellobiose in U1 was higher, while the transformation to glucose was lower. The results of DGGE and real-time PCR indicated that cellulose degradation bacteria are dominant in U1, cellulose degradation bacteria and cellulose degradation symbiosis bacteria are dominant in B1, and non-cellulose degradation symbiosis bacteria are dominant in both U2 and B2. The rate-limiting enzyme gene of cellulose degradation in U1, B1, and B2 is cel6B, but it is cel5A in U2.