Water–energy nexus has been recognized as an important and challenging issue, namely in industry. This is due to industry reforms, increasing demand, and climate change. This concept focuses on the link between energy and water infrastructure. Overall, there is limited understanding of the nature of this link, as it is assumed that water is not a threat to the energy sector or an influence of the electricity to the water resources. This work aims to present and evaluate case studies related to typical industrial water circuits. These circuits represent some of the most relevant industrial sectors in terms of water–energy nexus such as: steel industry, chemical industry, paper and pulp industry, and food industry. Moreover, these sectors also cover typical industrial water circuits, namely: cooling circuit, gas washing circuit, water treatment circuit, transportation circuit, and quenching circuit. The circuits have firstly been assembled in OpenModelica software considering the equipment and physical layout of each circuit. According to their actual operation conditions, the energy and water consumption have been estimated. Furthermore, water and energy efficiency improvement measures have been proposed and implemented into the assembled models. This enabled a techno-economic assessment based on the implementation of the improvement measures. In order to contextualise these results into the industrial trends, the achieved water and energy savings are projected into potential national and sectorial savings considering the current levels of water and energy demand for each sector.