Drought is characterised as a recurring climatic phenomenon with prolonged duration, affecting land through below-average rainfall and often accompanied by high temperatures. When the available water falls below the optimum level, water deficit or water stress arises, disrupting normal plant processes. This condition poses challenges for plant growth and development as it hampers the internal water transport, induces stomatal closure, and limits access to photosynthetic resources.The study employed the annual sunflower as the experimental plant. The plants were cultivated in a controlled environment with a temperature ranging from 20 to 25°C and a humidity level of 55 to 60%, supplemented by MARS HYDRO artificial LED lighting set to a 12-h photoperiod. Radial changes in the plant stems were monitored using a DD-S type dendrometric sensor to measure radial fluctuations. The collected data were recorded in a dendrometric data logger DL 18. Data collection occurred at hourly intervals from February 20 to March 9, 2023. The nine plants were divided into three groups, each comprising three plants. All plants from groups 1 and 2 received irrigation at oneday intervals (group 1 -80 cm 3 per plant, group 2 -40 cm 3 per plant) and group 3 was not irrigated.Based on these findings, visible water stress was evident in the plants under experimental conditions. Consequently, continuous monitoring throughout the growing season will be essential to adjust the irrigation rate to meet the requirements of the plants.