In the present study, DOPO-based alkoxysilane (DOPO-ETES) and amido alkoxysilane (DOPO-AmdPTES) were synthesized by one-step and without by-products as halogen-free flame retardants. The flame retardants were applied on cotton fabric utilizing sol–gel method and pad-dry-cure finishing process. The flame retardancy, the thermal stability and the combustion ehaviour of treated cotton were evaluated by surface and bottom edge ignition flame test (according to EN ISO 15025), thermogravimetric analysis (TGA) and micro-scale combustion calorimeter (MCC). Unlike CO/DOPO-ETES sample, cotton treated with DOPO-AmdPTES nanosols exhibits self-extinguishing ehaviour with high char residue, an improvement of the LOI value and a significant reduction of the PHRR, HRC and THR compared to pristine cotton. Cotton finished with DOPO-AmdPTES reveals a semi-durability after ten laundering cycles keeping the flame-retardant properties unchanged. According to the results obtained from TGA-FTIR, Py-GC/MS and XPS, the major activity of flame retardant occurs in the condensed phase via catalytic induced char formation as physical barrier along with the activity in the gas phase derived mainly from the dilution effect. The early degradation of CO/DOPO-AmdPTES compared to CO/DOPO-ETES, triggered by the cleavage of the weak bond between P and C=O, as the DFT study indicated, provides the beneficial effect of this flame retardant on the fire resistance of cellulose.
Graphical abstract