In this study, functionalization of PET fabrics with amino groups was achieved by aminolysis. Aminolysis routes were explored using different amine-based materials including ethylenediamine (EDA), triaminotriethylamine (TAEA) and (3-aminopropyl)trimethoxysilane (APTMS), (3-trimethoxysilylpropyl)diethylentriamine (TRIAMO) in addition to amino-functionalized silica nanoparticles as amino-silane based reagents. The samples were deeply characterized by SEM, AFM, and XPS. Abrasion and tensile tests were carried out to evaluate the mechanical properties of the modified fabrics. Resultsshowed that aminolysis conducted with EDA and TAEA as amino based reagents lower the performances of PET, while dense coatings can be deposited on the fibres by amino silane-based reagents that act as protective layers. APTMS modified PET presented improved abrasion resistance compared to the native PET.The antibacterial activity of the PET surfaces functionalized with the different amino groups was also evaluated using the gram-negative bacterium A. fischeri antibacterial assay. The results showed improved antibacterial performances of the native textile treated with APTMS and TAEA based reagents.
In the present study, DOPO-based alkoxysilane (DOPO-ETES) and amido alkoxysilane (DOPO-AmdPTES) were synthesized by one-step and without by-products as halogen-free flame retardants. The flame retardants were applied on cotton fabric utilizing sol–gel method and pad-dry-cure finishing process. The flame retardancy, the thermal stability and the combustion ehaviour of treated cotton were evaluated by surface and bottom edge ignition flame test (according to EN ISO 15025), thermogravimetric analysis (TGA) and micro-scale combustion calorimeter (MCC). Unlike CO/DOPO-ETES sample, cotton treated with DOPO-AmdPTES nanosols exhibits self-extinguishing ehaviour with high char residue, an improvement of the LOI value and a significant reduction of the PHRR, HRC and THR compared to pristine cotton. Cotton finished with DOPO-AmdPTES reveals a semi-durability after ten laundering cycles keeping the flame-retardant properties unchanged. According to the results obtained from TGA-FTIR, Py-GC/MS and XPS, the major activity of flame retardant occurs in the condensed phase via catalytic induced char formation as physical barrier along with the activity in the gas phase derived mainly from the dilution effect. The early degradation of CO/DOPO-AmdPTES compared to CO/DOPO-ETES, triggered by the cleavage of the weak bond between P and C=O, as the DFT study indicated, provides the beneficial effect of this flame retardant on the fire resistance of cellulose. Graphical abstract
Nylon-cotton textile blends (Nyco) are known to be challenging substrates regarding their flame-retardant functionalization and its durability. In this study, two different water-soluble flame retardants based on cyclophosphazene together with glycerol (GlyCPZ) and thioglycerol (ThioGlyCPZ) were synthesized enabling a waterborne finishing for Nyco. An extensive investigation of the flame-retardant performance and mechanism as well as the washing fastness was conducted. Thermogravimetric analysis (TGA) indicated changed degradation mechanisms for treated samples, which resulted in a reduced heat release capacity in microscale combustion calorimetry (MCC) measurements and an increased char yield. As a consequence, the limiting oxygen index (LOI) was enhanced from 20% for pure Nyco to 23% and 27.5% for GlyCPZ and ThioGlyCPZ, respectively. Also, the standardized flammability test according to ISO 15025 was passed. In addition, self-extinguishing characteristics were observed even after 10 washing cycles at 80 °C confirming the durability of the finishing. Sulfur was found to be gas phase active, as recombined sulfur compounds were identified in pyrolysis gas chromatography mass spectrometry (Py-GC/MS). Phosphorus was mainly active in the condensed phase, which was verified by analyses of digested burned textile samples using inductively coupled optical emission spectroscopy (ICP-OES).
Der pH-Wert der menschlichen Haut liegt nicht im neutralen Bereich, sondern ist mit Werten von 3,5-6 - je nach Körperstelle - leicht sauer. Dies bietet der kommensalen Hautflora einen geeigneten Lebensraum, wirkt jedoch abtötend auf einige pathogene Mikroorganismen und inaktivierend auf einige Viren. Dieser Säureschutzmantel der Haut stellt somit eine erste äußere Schutzschicht vor dem Befall von Krankheitserregern dar. Ein entsprechender Oberflächen-pH-Wert auf Textilien kann dazu beitragen, die Übertragung von Krankheitserregern durch die Kleidung von Mitarbeitern im Ge-sundheitswesen zu minimieren und gleichzeitig keinen negativen Einfluss auf die hauteigene Flora auszuüben. Zudem kann die Besiedlung von z.B. Bettwäsche durch pathogene Mikroorganismen vermindert werden. Einen positiven Einfluss kann dies zudem auf die bakterienassoziierte Geruchsbildung auf Funktionskleidung haben.
Die Anforderungen an Textilien unterscheiden sich je nach Anwendungsbereich stark, wobei es häufig nicht bei nur einer benötigten Funktionalität bleibt. Im Bereich der Funktions- oder Schutzkleidung bzw. PSA ist es z.B. nötig, die Träger der Kleidung vor UV-Strahlung zu schützen. Gleichzeitig bieten hier selbstreinigende Effekte gewisse Vorteile. Zudem kann eine antimikrobielle Wirkung im Bereich der Funktionskleidung die Bildung unangenehmer Gerüche vermindern, sowie im Bereich der PSA – besonders im Gesundheitswesen – zur Unterbrechung von Infektionsketten beitragen. Eine Möglichkeit, diese 3 gewünschten Funktionen in nur einem Ausrüstungsschritt zu erzielen, ist die Immobilisierung von Titandioxid (TiO2). Dieses wird aber aufgrund einer REACH-Listung kritisch für die Anwendung im textilen Sektor gesehen. Nachteilig ist zudem, dass es seine Wirkung nur unter UV-Einstrahlung entfaltet und damit nicht für den Innenbereich geeignet ist. Alternativ können Photokatalysatoren wie dotierte Zinkoxide (ZnO) verwendet werden, die auch durch Einstrahlung im Bereich des sichtbaren Lichts eine katalytische Aktivität aufweisen, die zur Abtötung von Mikroorganismen und zum Abbau organischer Verschmutzungen führen kann.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.