PM2.5 plays an important role in the physiological and pathological progression of lung cancer. Lentinan exerts antitumor activity in many kinds of human cancers. Plasmacytoma variant translocation 1 (PVT1) exerts antitumor activity in many kinds of human cancers. However, the role and underlying molecular mechanism of PVT1 in the role of lentinan in PM2.5-exposed lung cancer are still largely unknown. Our study confirmed that PM2.5 exposure induced the production of inflammatory factors, epithelial-mesenchymal transition (EMT) and migration of lung cancer cells. Lentinan exerted antitumor effects by inhibiting the production of inflammatory factors, EMT, and migration of lung cancer cells. Lentinan suppressed PM2.5 exposure-induced cellular progression by inhibiting the PM2.5 exposure-induced elevation of PVT1 expression. PVT1 absorbed miR-199a, and miR-199a inhibited caveolin1 expression and thus formed the PVT1/miR-199a/caveolin1 signaling pathway in lung cancer cells. Our study revealed that silencing of the PVT1/miR-199a/caveolin1 signaling pathway affected the role of lentinan in PM2.5-exposed lung cancer cells. Thus, this study first investigated the role of lentinan in PM2.5-exposed lung cancer cells and further displayed the underlying molecular mechanism, providing a potential treatment for PM2.5-exposed lung cancer.