In recent decades, extensive research has led to the understanding that Mars once hosted substantial liquid-water reserves. While the current Martian landscape boasts significant water-ice deposits at its North and South poles, the elusive presence of liquid-water bodies has remained undetected. A breakthrough occurred with the identification of radar-echo reflections at the base of the Martian South Pole, using MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) in 2018. These radar echoes strongly suggest the presence of a highly concentrated liquid-water body. However, a counter-narrative has emerged, contending that the subterranean conditions beneath the ice cap, encompassing factors like temperature and pressure, may be inhospitable to liquid water. Consequently, alternative hypotheses posit that the observed bright echoes could be attributed to conductive minerals or water-absorbing clay-like materials. The ongoing discourse regarding the presence of liquid water beneath the southern polar ice cap is a hot topic in the realm of Martian exploration. The primary focus of this paper is to provide a comprehensive overview of Martian radar detection, the recent controversies regarding liquid water’s existence in the Martian South Pole, and the implications regarding the potential existence of Martian life forms in the water on Mars. The revelation of liquid water on Mars fundamentally suggests an environment conducive to the viability of Martian life, consequently furnishing invaluable insights for future exploratory endeavors in the pursuit of Martian biospheres. In addition, this paper anticipates the forthcoming research dedicated to Martian liquid water and potential life forms, while also underscoring the profound significance of identifying liquid water on Mars in propelling the field of astrobiology forward.