Abstract. The Thermal Emission Spectrometer (TES) investigation on Mars GlobalThe TES data are calibrated to a 1-o-precision of 2.5 -6 X 10 -8 W cm -2 sr-1/cm -•, 1.6 x 10 -6 W cm -2 sr -•, and -0.5 K in the spectrometer, visible/near-IR bolometer, and IR bolometer, respectively_. These instrument subsections are calibrated to an absolute accuracy of-4 x 10 -8 W cm -2 sr-•/cm -• (0.5 K at 280 K), 1-2%, and -1-2 K, respectively. Global mapping of surface mineralogy at a spatial resolution of 3 km has shown the following: (1) The mineralogic composition of dark regions varies from basaltic, primarily plagioclase feldspar and clinopyroxene, in the ancient, southern highlands to andesitic, dominated by plagioclase feldspar and volcanic glass, in the younger northern plains. (2) Aqueous mineralization has produced gray, crystalline hematite in limited regions under ambient or hydrothermal conditions; these deposits are interpreted to be in-place sedimentary rock formations and indicate that liquid water was stable near the surface for a long period of time. (3) There is no evidence for large-scale (tens of kilometers) occurrences of moderate-grained (>50-•m) carbonates exposed at the surface at a detection limit of -10%. (4) Unweathered volcanic minerals dominate the spectral properties of dark regions, and weathering products, such as clays, have not been observed anywhere above a detection limit of -10%; this lack of evidence for chemical weathering indicates a geologic history dominated by a cold, dry climate in which mechanical, rather than chemical, weathering was the significant form of erosion and sediment production. (5) There is no conclusive evidence for sulfate minerals at a detection limit of -15%. The polar region has been studied with the following major conclusions: (1) Condensed CO2 has three distinct end-members, from fine-grained crystals to slab ice. (2) The growth and retreat of the polar caps observed by MGS is virtually the same as observed by Viking 12 Martian years ago. (3) Unique regions have been identified that appear to differ primarily in the grain size of CO2; one south polar region appears to remain as black slab CO2 ice throughout its sublimation. (4) Regional atmospheric dust is common in localized and regional dust storms around the margin and interior of the southern cap. Analysis of the thermophysical properties of the surface shows that (1) the spatial pattern of albedo has changed since Viking observations, (2) a unique cluster of surface materials with intermediate inertia and albedo occurs that is distinct from the previously identified lowinertia/bright and high-inertia/dark surfaces, and (3) localized patches of high-inertia material have been found in topographic lows and may have been formed by a unique set of aeolian, fluvial, or erosional processes or may be exposed bedrock.• •Raytheon Santa Barbara Remote Sensing, Goleta, California. IntroductionThe Thermal Emission Spectrometer (TES) experiment is designed to address a wide range of science objectives, including the de...
Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it might be a late stage sedimentary unit or a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarsegrained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: the first is chemical precipitation that includes origin by (1) precipitation from standing, oxygenated, Fe-rich water (oxide iron formations), (2) precipitation from Fe-rich hydrothermal fluids, (3) low-temperature dissolution and precipitation through mobile ground water leaching, and (4) formation of surface coatings, and the second is thermal oxidation of magnetite-rich lavas. Weathering and alteration processes, which produce nanophase and red hematite, are not consistent with the coarse, crystalline hematite observed in Sinus Meridiani. We prefer chemical precipitation models and favor precipitation from Fe-rich water on the basis of the probable association with sedimentary materials, large geographic size, distance from a regional heat source, and lack of evidence for extensive groundwater processes elsewhere on Mars. The TES results thus provide mineralogic evidence for probable large-scale water interactions. The Sinus Meridiani region may be an ideal candidate for future landed missions searching for biotic and prebiotic environments, and the physical characteristics of this site satisfy all of the engineering requirements for the missions currently planned.
[1] Emissivity spectra (1670-200 cm À1 ) from the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) show significant differences between bright and dark surfaces, allowing further investigation of their physical and mineralogical character. TES spectra from bright surfaces (albedo !0.2) typically show lower emissivity at high wavenumbers (>1300 cm À1 ) than that of dark surfaces (albedo <0.2). The opposite behavior is evident in the low wavenumbers (<560 cm À1 ), where bright surfaces have higher emissivity than dark ones. These trends are consistent with the spectral behavior of silicate materials of varying particle size. The short wavelength feature displayed by TES spectra of bright surfaces is a relatively strong absorption that likely is the result of particle size effects of surface silicate particles (100 mm in size. A dust cover index (DCI) is developed that exploits this short wavelength feature, serving to identify surfaces that range from dust-covered to dust-free. As a gauge of surface-obscuring silicate dust that can impact spectral measurements, the DCI is more direct than thermal inertia or albedo measurements. Spectral ratio analysis using emissivity spectra from adjacent bright and dark surfaces is explored as a means of deriving the mineralogy of surface dust. The result shows that the dust is dominated by silicate minerals with indication of a significant plagioclase feldspar component.
[1] Water played a major role in the formation and alteration of rocks and soils in the Columbia Hills. The extent of alteration ranges from moderate to extensive. Five distinct rock compositional classes were identified; the order for degree of alteration is Watchtower ffi Clovis > Wishstone ffi Peace > Backstay. The rover's wheels uncovered one unusual soil (Paso Robles) that is the most S-rich material encountered. Clovis class rocks have compositions similar to Gusev plains soil but with higher Mg, Cl, and Br and lower Ca and Zn; Watchtower and Wishstone classes have high Al, Ti, and P and low Cr and Ni; Peace has high Mg and S and low Al, Na, and K; Backstay basalts have high Na and K compared to plains Adirondack basalts; and Paso Robles soil has high S and P. Some rocks are corundum-normative, indicating that their primary compositions were changed by loss and/or gain of rock-forming elements. Clovis materials consist of magnetite, nanophase ferric-oxides (npOx), hematite, goethite, Ca-phosphates, Ca-and Mg-sulfates, pyroxene, and secondary aluminosilicates. Wishstone and Watchtower rocks consist of Fe-oxides/oxyhydroxides, ilmenite, Ca-phosphate, pyroxene, feldspar, Mg-sulfates, and secondary aluminosilicates. Peace consists of magnetite, npOx, Mg-and Ca-sulfates, pyroxene, olivine, feldspar, apatite, halides, and secondary aluminosilicates. Paso Robles consists of Fe 3+ -, Mg-, Ca-, and other sulfates, Ca-phosphates, hematite, halite, allophane, and amorphous silica. Columbia Hills outcrops and rocks may have formed by the aqueous alteration of basaltic rocks, volcaniclastic materials, and/or impact ejecta by solutions that were rich in acid-volatile elements.
Mineral deposits on the martian surface can elucidate ancient environmental conditions on the planet. Opaline silica deposits (as much as 91 weight percent SiO2) have been found in association with volcanic materials by the Mars rover Spirit. The deposits are present both as light-toned soils and as bedrock. We interpret these materials to have formed under hydrothermal conditions and therefore to be strong indicators of a former aqueous environment. This discovery is important for understanding the past habitability of Mars because hydrothermal environments on Earth support thriving microbial ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.