The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 μm. Selected absorption bands were studied at resolving powers (λ/Δλ) as high as 2240. At resolving powers of approximately 1000, many OH‐bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH‐stretching overtone region near 1.4 μm. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition. For example, in amphiboles and talcs, four absorption bands are observed in the samples analyzed in this study that are due to hydroxyl linked to Mg3, Mg2Fe, MgFe2, and Fe3 sites. The band intensities have been shown by other investigators to give the Fe:Fe+Mg ratio from transmission spectra. This study shows that the same equations can be used to obtain the ratio from reflectance spectra of unprepared samples. High‐resolution reflectance Spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field‐portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces.
Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean optical path length and the implications for use in modeling reflectance spectra are presented. It is shown that the mean optical path length in a particulate surface is in rough inverse proportion to the square root of the absorption coefficient. Thus, the stronger absorber a material is, the less photons will penetrate into the surface. The concept of apparent absorbance (‐In reflectance) is presented, and it is shown that absorption bands, which are Gaussian in shape when plotted as absorption coefficient (true absorbance) versus photon energy, are also Gaussians in apparent absorbance. However, the Gaussians in apparent absorbance have a smaller intensity and a width which is a factor of √2 larger. An apparent continuum in a reflectance spectrum is modeled as a mathematical function used to isolate a particular absorption feature for analysis. It is shown that a continuum should be removed by dividing it into the reflectance spectrum or subtracting it from the apparent absorbance and that the fitting of Gaussians to absorption features should be done using apparent absorbance versus photon energy. Kubelka‐Munk theory is only valid for materials with small total absorption and for bihemispherical reflectance, which are rarely encountered in geologic remote sensing. It is shown that the recently advocated bidirectional reflectance theories have the potential for use in deriving mineral abundance from a reflectance spectrum.
[1] The Noachian terrain west of the Isidis basin hosts a diverse collection of alteration minerals in rocks comprising varied geomorphic units within a 100,000 km 2 region in and near the Nili Fossae. Prior investigations in this region by the Observatoire pour l'Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) instrument on Mars Express revealed large exposures of both mafic minerals and iron magnesium phyllosilicates in stratigraphic context. Expanding on the discoveries of OMEGA, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) has found more spatially widespread and mineralogically diverse alteration minerals than previously realized, which represent multiple aqueous environments. Using CRISM near-infrared spectral data, we detail the basis for identification of iron and magnesium smectites (including both nontronite and more Mg-rich varieties), chlorite, prehnite, serpentine, kaolinite, potassium mica (illite or muscovite), hydrated (opaline) silica, the sodium zeolite analcime, and magnesium carbonate. The detection of serpentine and analcime on Mars is reported here for the first time. We detail the geomorphic context of these minerals using data from high-resolution imagers onboard MRO in conjunction with CRISM. We find that the distribution of alteration minerals is not homogeneous; rather, they occur in provinces with distinctive assemblages of alteration minerals. Key findings are (1) a distinctive stratigraphy, in and around the Nili Fossae, of kaolinite and magnesium carbonate in bedrock units always overlying Fe/Mg smectites and (2) evidence for mineral phases and assemblages indicative of low-grade metamorphic or hydrothermal aqueous alteration in cratered terrains. The alteration minerals around the Nili Fossae are more typical of those resulting from neutral to alkaline conditions rather than acidic conditions, which appear to have dominated much of Mars. Moreover, the mineralogic diversity and geologic context of alteration minerals found in the region around the Nili Fossae indicates several episodes of aqueous activity in multiple distinct environments.
Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.