2012
DOI: 10.1016/j.jsv.2012.05.022
|View full text |Cite
|
Sign up to set email alerts
|

Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
22
0
3

Year Published

2015
2015
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 39 publications
(25 citation statements)
references
References 11 publications
0
22
0
3
Order By: Relevance
“…Разно-модульными (или бимодульными) упругими свойствами, то есть различными модулями E 1 и E 2 упругости при растяжении и сжатии, обладает довольно широкий класс твердых тел: некоторые полимеры, композиционные и конструкционные материалы [6], грунты [7][8][9], а также твердые тела, содержащие трещины [10,11]. Распространение нелинейных аку-стических волн в разномодульных материалах исследовалось во многих работах [11][12][13][14], однако влияние релаксационных свойств на эволюцию нелинейных волн в таких средах не рассматривалось.…”
Section: Introductionunclassified
“…Разно-модульными (или бимодульными) упругими свойствами, то есть различными модулями E 1 и E 2 упругости при растяжении и сжатии, обладает довольно широкий класс твердых тел: некоторые полимеры, композиционные и конструкционные материалы [6], грунты [7][8][9], а также твердые тела, содержащие трещины [10,11]. Распространение нелинейных аку-стических волн в разномодульных материалах исследовалось во многих работах [11][12][13][14], однако влияние релаксационных свойств на эволюцию нелинейных волн в таких средах не рассматривалось.…”
Section: Introductionunclassified
“…6.1 has been derived in Gavrilov and Herman (2012) and was later extended for the arbitrary dimensionless excitation frequency in Kuznetsova et al (2016).…”
Section: Tension-compression Harmonic Excitationmentioning
confidence: 99%
“…In order to compare the chain of bilinear oscillators with its homogenized counterpart, we also considered a continuous 1-D bimodular rod and developed a solution for its wave equation. In doing so, we will not restrict ourselves to small difference in stiffnesses, thus providing a more general analysis than the ones presented in Naugolnykh and Ostrovsky (1998) and Gavrilov and Herman (2012).…”
Section: Introductionmentioning
confidence: 99%
“…The discontinuity of the piecewise linear relation gives rise to a strong nonlinearity, for which it is difficult to find analytical solutions for simple wave problems. Wave motion in bimodular media has been studied extensively [17,18,19,20,21,22,23,24,25,26]. Even a small difference between the moduli in tension and compression immediately causes the appearance of shock waves [22]; however linear viscosity eliminates the shocks.…”
mentioning
confidence: 99%
“…Wave motion in bimodular media has been studied extensively [17,18,19,20,21,22,23,24,25,26]. Even a small difference between the moduli in tension and compression immediately causes the appearance of shock waves [22]; however linear viscosity eliminates the shocks. A good review of the literature of wave motion in continuous bimodular media, particularly the considerable work done by Russian researchers, can be found in [22], while [27, p. 32] provides an earlier review.…”
mentioning
confidence: 99%