This study proposes an algorithm to improve the target localization performance. This is implemented in a multi-waveform multi-band hybrid (passive and active) multistatic radar network scenario, that utilize broadcasting signals for radar sensing, in addition to the radar waveforms. Multi-waveform multi-band radar receivers can exploit the broadcast signals transmitted by noncooperative transmitters, such as communication or broadcasting systems, for target sensing in addition to radar waveform. Hence, multiple measurements of the targets can be acquired and fused to improve the target detection and parameter estimation. Because of utilizing various waveforms, each transmitter-receiver (Tx-Rx) pair has a different range and velocity estimation accuracy, that is also affected by the bistatic geometry of the bistatic pairs. Taking this into account, this study proposes a target localization algorithm based on bistatic Cram ér-Rao Lower Bounds (CRLBs) for multistatic multi-band radar networks. It is shown that modeling the entire network and evaluating the bistatic range CRLB of each bistatic pair in advance, and utilizing this information while estimating the target location significantly improves the localization accuracy. Moreover, the proposed algorithm also includes a target height estimation correction stage to achieve a better 3D localization accuracy.