As técnicas de visualização desempenham um papel importante na assistência e compreensão de redes e seus elementos. No entanto, quando enfrentamos redes massivas, a análise tende a ser prejudicada pela confusão visual. Esquemas de simplificação e agrupamento têm sido algumas das principais alternativas neste contexto. No entanto, a maioria das técnicas de simplificação consideram apenas informações extraídas da topologia da rede, desconsiderando conteúdo adicional definido nos nós ou arestas da rede.Neste trabalho, propomos dois estudos. Primeiro uma nova metodologia para simplificação de redes que utiliza tanto a topologia quanto o conteúdo associado aos elementos de rede. A metodologia proposta baseia-se na fatoração de matriz não negativa (NMF) e emparelhamento para realizar a simplificação, combinadas para gerar uma representação hierárquica da rede, agrupando elementos semelhantes em cada nível da hierarquia. Propomos também um estudo da utilização da teoria de processamento de sinal em grafos para filtrar os dados associados aos elementos da rede e o seu efeito no processo de simplificação.Palavras-chave: Redes, Agrupamento, Fatoração de matrizes não negativas, Visualização, Emparelhamento de grafos.ABSTRACT DIAS, M. D. S. S. Simplification and analysis of network with multivariate data. 2018. 81 p. Tese (Doutorado em Ciências -Visualization tools play an important role in assisting and understanding networks and their elements. However, when faced with larger networks, analytical tasks can be hindered by visual clutter. Schemes of simplification and clustering have been a main alternative in this context. Nevertheless, most simplification techniques consider only information extracted from the network topology, disregarding additional content defined in nodes or edges.In this paper, we propose two studies. First, a new methodology for network simplification that uses both topology and content associated with network elements. The proposed methodology is based on non-negative matrix factorization (NMF) and graph matching to perform the simplification, combined to generate a hierarchical representation of the network, grouping the most similar elements at each level of a hierarchy. We also provide a study of the use of the graph signal processing theory to filter data associated to the elements of a network and its effect in the process of simplification.