Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37
DOI: 10.1109/iembs.2000.897966
|View full text |Cite
|
Sign up to set email alerts
|

Wavelet transform and neural-network-based adaptive filtering for QRS detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
13
0
1

Publication Types

Select...
4
3
2

Relationship

2
7

Authors

Journals

citations
Cited by 25 publications
(14 citation statements)
references
References 6 publications
0
13
0
1
Order By: Relevance
“…Wavelet transform represents a function by scaled wavelets in the time domain. 22 After ECG signals were digitized at 1000 Hz, the digital signals were divided into 10 frequency components or scales by using the ''coif5'' wavelet, a 5th order coiflet (a discrete wavelet) function designed by Ingrid Daubechies. 5,6 Coif5 wavelet is symmetrical, useful in preventing de-phasing image processing.…”
Section: Data Acquisition and Processingmentioning
confidence: 99%
“…Wavelet transform represents a function by scaled wavelets in the time domain. 22 After ECG signals were digitized at 1000 Hz, the digital signals were divided into 10 frequency components or scales by using the ''coif5'' wavelet, a 5th order coiflet (a discrete wavelet) function designed by Ingrid Daubechies. 5,6 Coif5 wavelet is symmetrical, useful in preventing de-phasing image processing.…”
Section: Data Acquisition and Processingmentioning
confidence: 99%
“…Di Virgilio et al [8] use time-scale diagrams to illustrate the detection capability of fiducial points on ECG signal (QRS complexes, P and T waves). Szilágyi et al [9] use an adaptive whitening filter for modeling the lower frequencies of the ECG. They claim that the estimation error translates into the QRS complex.…”
Section: Introductionmentioning
confidence: 99%
“…Para la detección de la onda R se han propuesto diferentes estrategias para resaltar las componentes espectrales que se encuentran en un ancho de banda entre los 10 y 20 Hz [4]. También se han obtenido éxitos a través del uso de redes neuronales y transformada wavelet [5], implementación de primeras derivadas [6], transformada curvelet [7], interpolación basada en curvas splines [8] y descomposición empíri-ca [9]. Los procesos de detección de la onda R proporcionan como resultado el realce de esta componente del complejo cardiaco en el dominio del tiempo.…”
Section: Introductionunclassified