Distributed order fractional model of viscoelastic body is used in order to describe wave propagation in infinite media. Existence and uniqueness of fundamental solution to the generalized Cauchy problem, corresponding to fractional wave equation, is studied. The explicit form of fundamental solution is calculated, and wave propagation speed, arising from solution's support, is found to be connected with the material properties at initial time instant. Existence and uniqueness of the fundamental solutions to the fractional wave equations corresponding to four thermodynamically acceptable classes of linear fractional constitutive models, as well as to power type distributed order model, are established and explicit forms of the corresponding fundamental solutions are obtained.Keywords: wave equation; distributed order model of viscoelastic body; linear fractional model; power type distributed order model;