We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense. (2000)
Mathematics Subject Classification
A variational principle for Lagrangian densities containing derivatives of real order is formulated and the invariance of this principle is studied in two characteristic cases. Necessary and sufficient conditions for an infinitesimal transformation group (basic Nöther's identity) are obtained. These conditions extend the classical results, valid for integer order derivatives. A generalization of Nöther's theorem leading to conservation laws for fractional Euler-Lagrangian equation is obtained as well. Results are illustrated by several concrete examples. Finally, an approximation of a fractional Euler-Lagrangian equation by a system of integer order equations is used for the formulation of an approximated invariance condition and corresponding conservation laws. (2000): Primary: 49K05; secondary: 26A33 PACS numbers: 02.30 Xx, 45.10 Hj
Mathematics Subject Classification
We discuss thermodynamical restrictions for a linear constitutive equation containing fractional derivatives of stress and strain of different orders. Such an equation generalizes several known models. The restrictions on coefficients are derived by using entropy inequality for isothermal processes. In addition, we study waves in a rod of finite length modelled by a linear fractional constitutive equation. In particular, we examine stress relaxation and creep and compare results with the quasistatic analysis.
Classical wave equation is generalized for the case of viscoelastic materials obeying fractional Zener model instead of Hooke's law. Cauchy problem for such an equation is studied: existence and uniqueness of the fundamental solution is proven and solution is calculated.
Distributed order fractional model of viscoelastic body is used in order to describe wave propagation in infinite media. Existence and uniqueness of fundamental solution to the generalized Cauchy problem, corresponding to fractional wave equation, is studied. The explicit form of fundamental solution is calculated, and wave propagation speed, arising from solution's support, is found to be connected with the material properties at initial time instant. Existence and uniqueness of the fundamental solutions to the fractional wave equations corresponding to four thermodynamically acceptable classes of linear fractional constitutive models, as well as to power type distributed order model, are established and explicit forms of the corresponding fundamental solutions are obtained.Keywords: wave equation; distributed order model of viscoelastic body; linear fractional model; power type distributed order model;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.