We introduce an over-penalized weak Galerkin method for elliptic interface problems with non-homogeneous boundary conditions and discontinuous coefficients, where the method combines a weak Galerkin stabilizer with interior penalty terms. This method employs double-valued functions on interior edges of elements instead of single-valued ones and elements (P k , P k , [P k−1 ] 2). As an advantage of the method, elliptic interface problems with low regularity are approximated well. The over-penalized weak Galerkin method is based on weak functions whose edge part is double-valued on each interior edge sharing by two neighboring elements. Jumps between the edge parts are naturally used to define penalty terms. The over-penalized weak Galerkin method allows to use arbitrary meshes, even for low regularity solutions. These features make the new method more flexible and efficient for solving interface equations. Furthermore, a priori error estimates in energy and L 2 norms are derived rigorously, and numerical results confirm the effectiveness of the method.