We discuss concepts and review results about the Cauchy problem for the Fornberg–Whitham equation, which has also been called Burgers–Poisson equation in the literature. Our focus is on a comparison of various strong and weak solution concepts as well as on blow-up of strong solutions in the form of wave breaking. Along the way we add aspects regarding semiboundedness at blow-up, from semigroups of nonlinear operators to the Cauchy problem, and about continuous traveling waves as weak solutions.