We characterize microlocal regularity, in the G ∞ -sense, of Colombeau generalized functions by an appropriate extension of the classical notion of micro-ellipticity to pseudodifferential operators with slow-scale generalized symbols. Thus we obtain an alternative, yet equivalent, way of determining generalized wavefront sets that is analogous to the original definition of the wavefront set of distributions via intersections over characteristic sets. The new methods are then applied to regularity theory of generalized solutions of (pseudo)differential equations, where we extend the general non-characteristic regularity result for distributional solutions and consider propagation of G ∞ -singularities for homogeneous first-order hyperbolic equations.
Abstract. We investigate microlocal properties of partial differential operators with generalized functions as coefficients. The main result is an extension of a corresponding (microlocalized) distribution theoretic result on operators with smooth hypoelliptic symbols. Methodological novelties and technical refinements appear embedded into classical strategies of proof in order to cope with most delicate interferences by non-smooth lower order terms. We include simplified conditions which are applicable in special cases of interest.
We consider the Cauchy problem for a hyperbolic pseudodifferential operator whose symbol is generalized, resembling a representative of a Colombeau generalized function. Such equations arise, for example, after a reduction-decoupling of second-order model systems of differential equations in seismology. We prove existence of a unique generalized solution under log-type growth conditions on the symbol, thereby extending known results for the case of differential operators [
We study integration and Fourier transform in the Colombeau algebra G G of tempered generalized functions using a general damping factor. This unifies different settings described earlier by J. F. Colombeau, M. Nedeljikov, S. Pilipovic, Ž . and M. Damsma for a simplified version . Further we prove characterizations of regularity for generalized functions in two situations: compactly supported or in the image of S S X inside G G . Finally we investigate the notion of wave front set in the Ž . n Colombeau algebra G G ⍀ , ⍀ an open subset of ޒ , and show that it is in fact independent of the damping measure used for Fourier transform.
We introduce an intrinsic notion of Hölder-Zygmund regularity for Colombeau generalized functions. In case of embedded distributions belonging to some Zygmund-Hölder space this is shown to be consistent. The definition is motivated by the well-known use of Littlewood-Paley decomposition in characterizing Hölder-Zygmund regularity for distributions. It is based on a simple interplay of differentiated convolution-mollification with wavelet transforms, which directly translates wavelet estimates into properties of the regularizations. Thus we obtain a scale of new subspaces of the Colombeau algebra. We investigate their basic properties and indicate first applications to differential equations whose coefficients are non-smooth but belong to some Hölder-Zygmund class (distributional or generalized). In applications problems of this kind occur, for example, in seismology when Earth's geological properties of fractal nature have to be taken into account while the initial data typically involve strong singularities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.