2020
DOI: 10.3389/fphy.2020.00363
|View full text |Cite
|
Sign up to set email alerts
|

Weak Transitions in Light Nuclei

Abstract: Nuclei are used for high-precision tests of the Standard Model and for studies of physics beyond the Standard Model. Without a thorough understanding of nuclei, we will not be able to meaningfully interpret the growing body of experimental data nor will we be able to disentangle new physics signals from underlying nuclear effects. This calls for accurate calculations of nuclear structure and reactions. In this work, we focus on electroweak decays in nuclei with mass number A ≤ 10 and report on ab initio Quantu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(1 citation statement)
references
References 82 publications
(164 reference statements)
0
1
0
Order By: Relevance
“…This local chiral framework has been used to calculate energies [23] and charge radii [24] and various electromagnetic observables in light nuclei, as the charge form factors in A = 6, 12 [24] and the magnetic structure of few-nucleon systems [22]. It has also been used to study weak transitions in light nuclei [25,26], the muon captures on A = 3, 6 nuclei [27], neutrinoless double β-decay for A = 6, 12 [28] and the β-decay spectra in A = 6 [29], and, finally, the equation of the state of pure neutron matter [30,31]. However, the use of the Norfolk potentials to study the muon capture on a deuteron and the pp reaction is still lacking.…”
Section: Introductionmentioning
confidence: 99%
“…This local chiral framework has been used to calculate energies [23] and charge radii [24] and various electromagnetic observables in light nuclei, as the charge form factors in A = 6, 12 [24] and the magnetic structure of few-nucleon systems [22]. It has also been used to study weak transitions in light nuclei [25,26], the muon captures on A = 3, 6 nuclei [27], neutrinoless double β-decay for A = 6, 12 [28] and the β-decay spectra in A = 6 [29], and, finally, the equation of the state of pure neutron matter [30,31]. However, the use of the Norfolk potentials to study the muon capture on a deuteron and the pp reaction is still lacking.…”
Section: Introductionmentioning
confidence: 99%