2020
DOI: 10.48550/arxiv.2006.06729
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Weak variable step-size schemes for stochastic differential equations based on controlling conditional moments

Abstract: We address the weak numerical solution of stochastic differential equations driven by independent Brownian motions (SDEs for short). This paper develops a new methodology to design adaptive strategies for determining automatically the step-sizes of the numerical schemes that compute the mean values of smooth functions of the solutions of SDEs. First, we introduce a general method for constructing variable step-size weak schemes for SDEs, which is based on controlling the matching between the first conditional … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 46 publications
(83 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?