2020
DOI: 10.1155/2020/6216048
|View full text |Cite
|
Sign up to set email alerts
|

Weakly Supervised GAN for Image-to-Image Translation in the Wild

Abstract: Generative Adversarial Networks (GANs) have achieved significant success in unsupervised image-to-image translation between given categories (e.g., zebras to horses). Previous GANs models assume that the shared latent space between different categories will be captured from the given categories. Unfortunately, besides the well-designed datasets from given categories, many examples come from different wild categories (e.g., cats to dogs) holding special shapes and sizes (short for adversarial examples), so the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?