Telemedicine and mobile healthcare communication devices require compact antennas with superior performance and reduced size and weight. The design and development of such antennas for broadband applications are challenging for many researchers. In this study, a wearable rectangular microstrip antenna was designed and implemented to detect many tumors. The patch and ground part of the antenna, which can be used as both a transmitter and a receiver in microwave imaging systems, are made of copper tape, graphene, conductive paint, and the substrate is made of felt (Ɛr = 1.3). Antenna parameters were optimized using the CST Microwave Studio program. The conventional microstrip antennas have a narrow band and low gain. The antenna in this study is designed and implemented differently from the conventional microstrip antennas and can be easily used in applications requiring ultra-wideband. In addition, the radiation characteristic of the designed antenna is quite good, and the electric field change around it is at a level that will not cause any health problems. The variation of the conductivity values of the organs in the human body is high in the 1 GHz-10 GHz frequency band. The antenna, which is designed based on the fact that the conductivity values of healthy tissues and tumor/cancer tissues are different, can be used in microwave imaging systems to detect tumors in organs such as the lung, brain, liver, and kidney. Also, the designed antenna is in a wearable form, allowing continuous monitoring of patients with high cancer risk. In this article, a microstrip patch antenna with a flexible substrate with copper tape, conductive paint, and graphene-based conductor that can be used for imaging and telemedicine applications is proposed, and its performance is experimentally analyzed. A standard and low-cost 3D printer are used to produce the graphene-based conductive part. In addition, copper tape and conductive paint materials were used to produce the patch part with an easier and cheaper method without a special device. The performance, return loss, and gain of the produced antennas were analyzed both in simulation and experimentally.