The ability to switch fuels for oxidation in response to changes in macronutrient composition of diet (metabolic flexibility) may be informative of individuals’ susceptibility to weight gain. Seventy-nine healthy, weight-stable participants underwent 24-h assessments of energy expenditure and respiratory quotient (RQ) in a whole-room calorimeter during energy balance (EBL) (50% carbohydrate, 30% fat) and then during 24-h fasting and three 200% overfeeding diets in a crossover design. Metabolic flexibility was defined as the change in 24-h RQ from EBL during fasting and standard overfeeding (STOF) (50% carbohydrate, 30% fat), high-fat overfeeding (HFOF) (60% fat, 20% carbohydrate), and high-carbohydrate overfeeding (HCOF) (75% carbohydrate, 5% fat) diets. Free-living weight change was assessed after 6 and 12 months. Compared with EBL, RQ decreased on average by 9% during fasting and by 4% during HFOF but increased by 4% during STOF and by 8% during HCOF. A smaller decrease in RQ, reflecting a smaller increase in lipid oxidation rate, during HFOF but not during the other diets predicted greater weight gain at both 6 and 12 months. An impaired metabolic flexibility to acute HFOF can identify individuals prone to weight gain, indicating that an individual’s capacity to oxidize dietary fat is a metabolic determinant of weight change.