IntroductionTheABCC8gene regulates insulin secretion and plays a critical role in glucose homeostasis. The effects of anABCC8R1420H loss-of-function variant on beta-cell function, incidence of type 2 diabetes, and age-at-onset, prevalence, and progression of diabetes complications were assessed in a longitudinal study in American Indians.Research design and methodsWe analyzed beta-cell function through the relationship between insulin secretion and insulin sensitivity in members of this population without diabetes aged ≥5 years using standard major axis regression. We used hierarchical logistic regression models to study cross-sectional associations with diabetes complications including increased albuminuria (albumin-to-creatinine ratio (ACR) ≥30 mg/g), severe albuminuria (ACR ≥300 mg/g), reduced estimated glomerular filtration rate (eGFR <60 mL/min/1.73 m2), and retinopathy. This study included 7675 individuals (254 variant carriers) previously genotyped for the R1420H with available phenotypic data and with a median follow-up time of 13.5 years (IQR 4.5–26.8).ResultsVariant carriers had worse beta-cell function than non-carriers (p=0.0004; on average estimated secretion was 22% lower, in carriers), in children and adults, with no difference in insulin sensitivity (p=0.50). At any body mass index and age before 35 years, carriers had higher type 2 diabetes incidence. This variant did not associate with prevalence of increased albuminuria (OR 0.87, 95% CI 0.66 to 1.16), severe albuminuria (OR 0.96, 95% CI 0.55 to 1.68), or reduced eGFR (OR 0.44, 95% CI 0.18 to 1.06). By contrast, the variant significantly associated with higher retinopathy prevalence (OR 1.74, 95% CI 1.19 to 2.53) and this association was only partially mediated (<11%) by glycemia, duration of diabetes, risk factors of retinopathy, or insulin use. Retinopathy prevalence in carriers was higher regardless of diabetes presence.ConclusionsTheABCC8R1420H variant is associated with increased risks of diabetes and of retinopathy, which may be partially explained by higher glycemia levels and worse beta-cell function.