Abstract-Telecommunication systems integrated within garments and wearable products are such methods by which medical devices are making an impact on enhancing healthcare provisions around the clock. These garments when fully developed will be capable of alerting and demanding attention if and when required along with minimizing hospital resources and labour. Furthermore, they can play a major role in preventative ailments, health irregularities and unforeseen heart or brain disorders in apparently healthy individuals. This work presents the feasibility of investigating an Ultra-WideBand (UWB) antenna made from fully textile materials that were used for the substrate as well as the conducting parts of the designed antenna. Simulated and measured results show that the proposed antenna design meets the requirements of wide working bandwidth and provides 17 GHz bandwidth with compact size, washable and flexible materials. Results in terms of return loss, bandwidth, radiation pattern, current distribution as well as gain and efficiency are presented to validate the usefulness of the current manuscript design. The work presented here has profound implications for future studies of a standalone suite that may one day help to provide wearer (patient) with such reliable and comfortable medical monitoring techniques.