In this paper, we study the weighted estimates for multilinear Calderón-Zygmund operators from L p1 (w 1 ) × · · · × L pm (w m ) to L p (v w ), where 1 < p, p 1 , · · · , p m < ∞ with 1/p 1 + · · · + 1/p m = 1/p and w = (w 1 , · · · , w m ) is a multiple A P weight. We give weak and strong type weighted estimates of mixed A p -A ∞ type. Moreover, the strong type weighted estimate is sharp whenever max i p i ≤ p ′ /(mp − 1).