"Nanostructured materials" are those having properties defined by features smaller than 100 nm. This class of materials is interesting for the reasons: i) They include most materials, since a broad range of properties-from fracture strength to electrical conductivitydepend on nanometer-scale features. ii) They may offer new properties: The conductivity and stiffness of buckytubes, and the broad range of fluorescent emission of CdSe quantum dots are examples. iii) They can mix classical and quantum behaviors. iv) They offer a bridge between classical and biological branches of materials science. v) They suggest approaches to "materials-by-design". Nanomaterials can, in principle, be made using both top-down and bottom-up techniques. Self-assembly bridges these two techniques and allows materials to be designed with hierarchical order and complexity that mimics those seen in biological systems. Self-assembly of nanostructured materials holds promise as a low-cost, high-yield technique with a wide range of scientific and technological applications.