Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Brown fields that are currently experiencing production decline can benefit a lot from production enhancement operations based on localization of residual reserves and geology clarification. The set of solutions includes targeted recommendations for additional well surveys followed by producers and injectors workovers, like whole wellbore or selective stimulation, polymer flow conformance, hydraulic fracturing and side tracking. As a result, previously poorly drained areas are involved in production, which increases current rates and ultimate recovery. The integrated technology of residual reserves localization and production increase includes: Primary analysis of the production history for reservoir blocks ranking by production increase potential. Advanced bottom-hole pressures and production history analysis by multiwell deconvolution for pressure maintenance system optimization and production enhancement. Advanced production logging for flow profile and production layer-by-layer allocation. Conducting pulse-code interference testing for average saturation between wells estimation. 3D reservoir dynamic model calibration on advanced tests findings. Multi-scenario development planning for the scenario with biggest NPV regarding surface infrastructure. The presented integrated technology is carried stage by stage. Based on the data analysis at the first stage (the Prime analysis) it is possible to get three types of results. The top-level assessment of the current development opportunities of the area, evaluation of current residual reserves on base of displacement sweep efficiency estimation, and evaluation of the potential production increase for various blocks of the field. Results of the second stage were obtained for the block deemed with the highest potential for production increase. Those results may reveal possible complications, and relevant workovers can be advised along with additional surveys that can further help to locate current reserves. The last stage of Prime analysis provides the most suitable choice was to perform an advanced logging and well-testing, as they include both single-well and multi-well tests. Pulse-code interference tests, multi-well retrospective tests and reservoir-oriented production logging make it possible to scan the reservoir laterally and vertically, which is especially important for multi-layered fields. The reservoir parameters obtained from the test results are used to calibrate the dynamic reservoir model. The effects of production enhancement operations are calculated from the 3D model. The set of possible activities is evaluated in terms of their financial efficiency based on the economic model of the operator company using multi-scenario approach on a specifically created digital twin of the field. The unique feature of this approach lies in an integrated usage of advanced production history analysis, advanced logging and well-testing technologies, as well as further calibration of the dynamic reservoir model based on test results and used-friendly interface for field digital twin interaction. This paper demonstrates on how to use the field tests results to calibrate the reservoir model and increase the accuracy of production forecasting by reducing the model uncertainty, with intent to increase profit of brownfields.
Brown fields that are currently experiencing production decline can benefit a lot from production enhancement operations based on localization of residual reserves and geology clarification. The set of solutions includes targeted recommendations for additional well surveys followed by producers and injectors workovers, like whole wellbore or selective stimulation, polymer flow conformance, hydraulic fracturing and side tracking. As a result, previously poorly drained areas are involved in production, which increases current rates and ultimate recovery. The integrated technology of residual reserves localization and production increase includes: Primary analysis of the production history for reservoir blocks ranking by production increase potential. Advanced bottom-hole pressures and production history analysis by multiwell deconvolution for pressure maintenance system optimization and production enhancement. Advanced production logging for flow profile and production layer-by-layer allocation. Conducting pulse-code interference testing for average saturation between wells estimation. 3D reservoir dynamic model calibration on advanced tests findings. Multi-scenario development planning for the scenario with biggest NPV regarding surface infrastructure. The presented integrated technology is carried stage by stage. Based on the data analysis at the first stage (the Prime analysis) it is possible to get three types of results. The top-level assessment of the current development opportunities of the area, evaluation of current residual reserves on base of displacement sweep efficiency estimation, and evaluation of the potential production increase for various blocks of the field. Results of the second stage were obtained for the block deemed with the highest potential for production increase. Those results may reveal possible complications, and relevant workovers can be advised along with additional surveys that can further help to locate current reserves. The last stage of Prime analysis provides the most suitable choice was to perform an advanced logging and well-testing, as they include both single-well and multi-well tests. Pulse-code interference tests, multi-well retrospective tests and reservoir-oriented production logging make it possible to scan the reservoir laterally and vertically, which is especially important for multi-layered fields. The reservoir parameters obtained from the test results are used to calibrate the dynamic reservoir model. The effects of production enhancement operations are calculated from the 3D model. The set of possible activities is evaluated in terms of their financial efficiency based on the economic model of the operator company using multi-scenario approach on a specifically created digital twin of the field. The unique feature of this approach lies in an integrated usage of advanced production history analysis, advanced logging and well-testing technologies, as well as further calibration of the dynamic reservoir model based on test results and used-friendly interface for field digital twin interaction. This paper demonstrates on how to use the field tests results to calibrate the reservoir model and increase the accuracy of production forecasting by reducing the model uncertainty, with intent to increase profit of brownfields.
The analyzed oi- gas field is based around Orenburg region, located 40 km away from the Buzuluk city, Russia. This multi-layered field has a number of domes. 11 productive layers lie within its cross-section. In total, 21 oil and two gas deposits have been identified at this field. The study layer A4 is confined to the top of the Bashkir layer and has a wide extension. Permeable rocks at this layer include limestone and dolomite, separated by impermeable sublayers. The effective oil-saturated well thicknesses vary between 1.1-38.4 m, and is 11.8 m on average. The caprock of the formation A4 consists of the Vereiskan clay-siltstone sequence.
The investigated field is located in the Solikamsk drawdown in the northeast of the Perm Territory. The oil content level of this field is composed of Tournaisian-Famennian, Radaevsky, Radaevian, and Tula formations. This article will analysis carbonate deposits from the Tula formation using the multiwell retrospective testing (MRT) technology. Currently, the development system has been already formed, and there is ongoing compaction drilling and targeted drawdown increase that is carried out at certain wells. A pressure support system has been formed. Before the surveys have been conducted, there was a trend in production decline, for reasons that are currently unknown. To identify the causes of production decline at the carbonate reservoir in the field, special technology was used to analysis production history data and bottom hole pressure - this technology is called multiwell retrospective testing (MRT). Four sections were selected for further analysis, MRT was able to reconstruct the reservoir pressure variations and production coefficient at the tested well, the influence of the offset wells on the tested wells has been evaluated, along with transmissibility at the cross-well interval and well-bore skin of the tested wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.