1990
DOI: 10.1142/s0217751x9000115x
|View full text |Cite
|
Sign up to set email alerts
|

Wess-Zumino-Witten Model as a Theory of Free Fields

Abstract: The free field representation or "bosonization" rule1 for Wess-Zumino-Witten model (WZWM) with arbitrary Kac-Moody algebra and arbitrary central charge is discussed. Energy-momentum tensor, arising from Sugawara construction, is quadratic in the fields. In this way, all known formulae for conformal blocks and correlators may be easily reproduced as certain linear combinations of correlators of these free fields. Generalization to conformal blocks on arbitrary Riemann surfaces is straightforward. However, proje… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

6
258
0
15

Year Published

1993
1993
2016
2016

Publication Types

Select...
6
3

Relationship

2
7

Authors

Journals

citations
Cited by 253 publications
(279 citation statements)
references
References 0 publications
6
258
0
15
Order By: Relevance
“…However, the generalized Macdonald polynomials in this case remain to be computed. One of possible difficulties on this way is that bosonization involves less trivial free fields a la [135][136][137].…”
Section: Resultsmentioning
confidence: 99%
“…However, the generalized Macdonald polynomials in this case remain to be computed. One of possible difficulties on this way is that bosonization involves less trivial free fields a la [135][136][137].…”
Section: Resultsmentioning
confidence: 99%
“…4) Эта перенормировка является артефактом неудобной нормировки, изначально выбранной в работах [26], [27], и может быть поглощена перенормировкой скалярного поля φ(z) = √ 2 ϕ(z) (ср., например, нормировки в работах [29] и [30]). …”
Section: разложение по характерам для удобства в этом разделе мы полunclassified
“…За пределами свободных полей. Произвольная КТП может быть эф-фективно описана в терминах свободных полей [29], [30], однако число свободных полей в общем случае больше единицы, и должны быть наложены связи (20) на промежуточное состояние. При этом возникает естественный вопрос: что происхо-дит с уравнениями (24)- (26)?…”
unclassified
“…The main question is whether the worldsheet vacua converge in Segal's formalism which we use here. However, the level k WZW model is a subquotient of a free field theory by [22]. For free field theories, it is known that the scaled vertex operators corresponding to worldsheets are smooth (cf.…”
Section: An Example: Cardy Branesmentioning
confidence: 99%