Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of maize in the United States and is an invasive pest in Europe. Maize is the only agricultural crop on which western corn rootworm larvae can survive and this insect requires two consecutive years of maize cultivation to complete its life cycle. Transgenic maize producing insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt) is often used to manage rootworm populations. The first Bt trait, Cry3Bb1, was introduced in 2003, but larval resistance to this toxin appeared in northeastern Iowa in 2009. Rootworm management occurs on a field-by-field basis, but adult rootworm may disperse among fields. It is known that growing consecutive years of Cry3Bb1 maize within a field can lead to resistance, but the relationship of the surrounding landscape to the development of resistance is unknown. Using geospatial tools and publicly available land-use data, we examined circular areas (buffers) surrounding fields that had previously experienced high levels of rootworm injury to Cry3Bb1 maize and rootworm resistance to Cry3Bb1 maize (problem fields). We calculated the proportion of area inside each buffer planted to maize continuously for 1-9 yr, and compared these values to those for randomly selected control points throughout the state. We also calculated the proportion of the state planted to maize for at least three consecutive years for 2003 through 2018, and its relationship with the annual value of maize. We found that areas surrounding problem fields had significantly more continuous maize compared to controls, with the most continuous maize within 1.6 km of problem fields. We also found that the cultivation of continuous maize in Iowa increased significantly between 2003 and 2018, and this was correlated with average annual price of maize. We hypothesize a scenario in which continuous cultivation of Cry3Bb1 maize in local landscapes, driven in part by the increased value of maize, facilitated selection for Cry3Bb1 resistance. These results suggest that land use in areas surrounding problem fields affect the rate of resistance evolution and approaches for resistance management can be enhanced by taking a landscape-level perspective.