Sustainable water management in a changing environment full of uncertainty is profoundly challenging. To deal with these uncertainties, dynamic adaptive policies that can be changed over time are suggested. This paper presents a model-driven approach supporting the development of promising adaptation pathways, and illustrates the approach using a hypothetical case. We use robust optimization over uncertainties related to climate change, land use, cause-effect relations, and policy efficacy, to identify the most promising pathways. For this purpose, we generate an ensemble of possible futures and evaluate candidate pathways over this ensemble using an Integrated Assessment Meta Model. We understand 'most promising' in terms of the robustness of the performance of the candidate pathways on multiple objectives, and use a multi-objective evolutionary algorithm to find the set of most promising pathways. This results in an adaptation map showing the set of most promising adaptation pathways and options for transferring from one pathway to another. Given the pathways and signposts, decision-makers can make an informed decision on a dynamic adaptive plan in a changing