Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeThis systematic review aimed to analyze the characteristics of different diagnostic techniques for micrognathia, summarize the consistent diagnostic criteria of each technique, and provide a simple and convenient prenatal diagnosis strategy for micrognathia.MethodsIn accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the search was undertaken in three international databases (PubMed, Scopus, and Web of Science). The three reviewers assessed all papers and extracted the following variables: author's name and year of publication, country, study design, number of participants, gestational age, equipment for prenatal examination, biometric parameters related to micrognathia, main results.ResultsA total of 25 articles included in the analysis. Nineteen articles described cross-sectional studies (76 percent), 4 (16 percent) were case-control studies, and 2 (8 percent) were cohort studies. Fifteen studies (60 percent) had a prospective design, 9 (36 percent) had a retrospective design, and one (4 percent) had both prospective and retrospective design. Thirty-two percent of the studies (n = 8) were performed in USA, and the remaining studies were performed in China (n = 4), Israel (n = 3), Netherlands (n = 3), UK (n = 1), France (n = 1), Italy (n = 1), Belgium(n = 1), Germany (n = 1), Spain (n = 1), and Austria (n = 1). The prenatal diagnosis of micrognathia can be performed as early as possible in the first trimester, while the second and third trimester of pregnancy were the main prenatal diagnosis period. The articles that were included in the qualitative synthesis describe 30 biometric parameters related to the mandible.ConclusionOf the 30 biometric parameters related to the mandible, 15 can obtain the simple and convenient diagnostic criteria or warning value for micrognathia. Based on these diagnostic criteria or warning value, clinicians can quickly make a preliminary judgment on facial deformities, to carry out cytologic examination to further clarify the diagnosis of micrognathia.
PurposeThis systematic review aimed to analyze the characteristics of different diagnostic techniques for micrognathia, summarize the consistent diagnostic criteria of each technique, and provide a simple and convenient prenatal diagnosis strategy for micrognathia.MethodsIn accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the search was undertaken in three international databases (PubMed, Scopus, and Web of Science). The three reviewers assessed all papers and extracted the following variables: author's name and year of publication, country, study design, number of participants, gestational age, equipment for prenatal examination, biometric parameters related to micrognathia, main results.ResultsA total of 25 articles included in the analysis. Nineteen articles described cross-sectional studies (76 percent), 4 (16 percent) were case-control studies, and 2 (8 percent) were cohort studies. Fifteen studies (60 percent) had a prospective design, 9 (36 percent) had a retrospective design, and one (4 percent) had both prospective and retrospective design. Thirty-two percent of the studies (n = 8) were performed in USA, and the remaining studies were performed in China (n = 4), Israel (n = 3), Netherlands (n = 3), UK (n = 1), France (n = 1), Italy (n = 1), Belgium(n = 1), Germany (n = 1), Spain (n = 1), and Austria (n = 1). The prenatal diagnosis of micrognathia can be performed as early as possible in the first trimester, while the second and third trimester of pregnancy were the main prenatal diagnosis period. The articles that were included in the qualitative synthesis describe 30 biometric parameters related to the mandible.ConclusionOf the 30 biometric parameters related to the mandible, 15 can obtain the simple and convenient diagnostic criteria or warning value for micrognathia. Based on these diagnostic criteria or warning value, clinicians can quickly make a preliminary judgment on facial deformities, to carry out cytologic examination to further clarify the diagnosis of micrognathia.
ObjectivesEvaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated landmark propagation pipeline using 3D motion-corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements.MethodsA literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI. An MRI atlas with defined anatomical landmarks served as a template for subject registration, auto-labelling, and biometric calculation. We assessed 108 healthy controls and 24 fetuses with Down syndrome (T21) in the third trimester (29-36 weeks gestational age, GA) to identify meaningful biometrics in T21. Reliability and reproducibility were evaluated in 10 random datasets by four observers.ResultsAutomated labels were produced for all 132 subjects with a 0.03% placement error rate. Seven measurements, including anterior base of skull length and maxillary length, showed significant differences with large effect sizes between T21 and control groups (ANOVA, p<0.001). Manual measurements took 25-35 minutes per case, while automated extraction took approximately 5 minutes. Bland-Altman plots showed agreement within manual observer ranges except for mandibular width, which had higher variability. Extended GA growth charts (19-39 weeks), based on 280 control fetuses, were produced for future research.ConclusionThis is the first automated atlas-based protocol using 3D SVR MRI for fetal craniofacial biometrics, accurately revealing morphological craniofacial differences in a T21 cohort. Future work should focus on improving measurement reliability, larger clinical cohorts, and technical advancements, to enhance prenatal care and phenotypic characterisation.
Objectives Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated label propagation pipeline using 3D motion- corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements. Methods A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI. An MRI atlas with defined anatomical landmarks served as a template for subject registration, auto-labelling, and biometric calculation. We assessed 108 healthy controls and 24 fetuses with Down syndrome (T21) in the third trimester (29–36 weeks gestational age, GA) to identify meaningful biometrics in T21. Reliability and reproducibility were evaluated in 10 random datasets by four observers. Results Automated labels were produced for all 132 subjects with a 0.3% placement error rate. Seven measurements, including anterior base of skull length and maxillary length, showed significant differences with large effect sizes between T21 and control groups (ANOVA, p<0.001). Manual measurements took 25–35 minutes per case, while automated extraction took approximately 5 minutes. Bland-Altman plots showed agreement within manual observer ranges except for mandibular width, which had higher variability. Extended GA growth charts (19–39 weeks), based on 280 control fetuses, were produced for future research. Conclusion This is the first automated atlas-based protocol using 3D SVR MRI for fetal craniofacial biometrics, accurately revealing morphological craniofacial differences in a T21 cohort. Future work should focus on improving measurement reliability, larger clinical cohorts, and technical advancements, to enhance prenatal care and phenotypic characterisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.