We derive constraints on corrections to Newtonian gravity of the Yukawa type and light elementary particles from two recently performed measurements of the gradient of the Casimir force. In the first measurement the configuration of two Au surfaces has been used, whereas in the second a nonmagnetic metal Au interacted with a magnetic metal Ni. In these configurations one arrives at different, respectively, similar theoretical predictions for the Casimir force when the competing theoretical approaches are employed. Nevertheless, we demonstrate that the constraints following from both experiments are in mutual agreement and in line with constraints obtained from earlier measurements. This confirms the reliability of constraints on non-Newtonian gravity obtained from measurements of the Casimir force.