Virtual reality (VR) is seen by some as a tool that may greatly improve, or even revolutionize cognitive rehabilitation. VR offers distinct advantages compared to classic rehabilitation using paper-and-pencil or computer-based training, such as immersion, the feeling of presence, embodiment of virtual players, ecological and multisensory stimulation. We here review recent clinical studies examining the effects of VR training in patients with stroke-induced cognitive deficits. Several trials reported evidence that VR training improves general cognition compared to standard cognitive training. However, the evidence remains controversial, as some of these studies had a high risk of bias. Regarding mood, there is some indication that immersive training improves depression scores in stroke patients, but the number of studies examining mood changes is very low. Finally, in the domain of spatial cognition the development of specific intervention techniques such as virtual prism adaptation provide avenues for clinical interventions, though well-controlled clinical trials are lacking. Together, the available evidence suggests that VR has the potential to improve rehabilitation particularly in domains requiring repetitive training in an immersed, ecological setting, or when a mismatch between body frames and the environment is created. Controlled clinical studies are required to examine the specific advantages of VR compared to classic interventions.