Laparoscopic and robotic assisted surgeries have evolved from a limited surgical procedure to a major surgical technique during the last three decades. The indications increased incrementally. Despite its several advantages, it has some surgery and pneumoperitoneum related adverse effects and hemodynamic complications. One of them is the ischemia reperfusion injury (IRI) of the abdominal organs that can be developed secondary to pneumoperitoneum. IRI is also a risk factor for acute kidney injury in partial nephrectomy surgeries even performed via open, or laparoscopic/ robotic assisted. To reduce or avoid the IRI related complications during laparoscopy and robotics, several alternative approaches were suggested including ischemic preconditioning (IPC). IPC is a phenomenon that promotes tissue tolerance to ischemia. Since it was first introduced, several studies evaluating its protective effects or mechanism of action have been published. Majority of them demonstrated its potent beneficial effects against IRI. Despite these favorable results, IPC has not yet been used in clinical settings routinely. The unknown parts of the exact mechanisms, the lack of standard protocols for its use such as the duration of clamping, the number of clamping cycles, using an early window or a late window, using local IP or remote IP, and the all remaining uncertainly about these aspects of the process might lead clinicians to be hesitant about its clinical use. In this study we discussed what we have in our hands regarding the effects of IRI and protective mechanisms of IPC, animal studies and clinical evidence of IPC, remote and local IPC, laparoscopy/robotics induced IRI, and role of laparoscopic/robotic IPC.