Human cognition is not solitary, it is shaped by collective learning and memory. Unlike swarms or herds, human social networks have diverse topologies, serving diverse modes of collective cognition and behaviour. Here, we review research that combines network structure with psychological and neural experiments and modelling to understand how the topology of social networks shapes collective cognition. First, we review graph-theoretical approaches to behavioural experiments on collective memory, belief propagation and problem solving. These results show that different topologies of communication networks synchronize or integrate knowledge differently, serving diverse collective goals. Second, we discuss neuroimaging studies showing that human brains encode the topology of one's larger social network and show similar neural patterns to neural patterns of our friends and community ties (e.g. when watching movies). Third, we discuss cognitive similarities between learning social and non-social topologies, e.g. in spatial and associative learning, as well as common brain regions involved in processing social and non-social topologies. Finally, we discuss recent machine learning approaches to collective communication and cooperation in multi-agent artificial networks. Combining network science with cognitive, neural and computational approaches empowers investigating how social structures shape collective cognition, which can in turn help design goal-directed social network topologies.
This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.