As typical II–VI ternary alloyed chalcogenides, CdSeS nanostructures have attracted intensive worldwide attention due to their excellent tunable optical properties based on quantum confinement effect and optical nonlinear phenomenon. Because CdSeS-based nanostructures have presented a great potential for applications in biomedicine and optoelectronic devices, different synthesis methods have been proposed to prepare CdSeS-based nanostructures with divergent optical properties to meet the needs of those applications, such as fluorescent labeling,in vivoimaging, waveguides, and solar cell. In this review, the tricks, advantages, and disadvantages of all these synthesis methods were discussed, including hot-injection synthesis, one-pot noninjection synthesis, microwave irradiation, solvothermal synthesis, template-assisted electrodeposition, thermal evaporation, and pulsed laser deposition. Special emphasis was put on those methods that are safe, economic, environment-friendly, and suitable for large-scale production of alloyed CdSeS nanostructures with high photoluminescence, high stability, and low/no cytotoxicity.