Two methods for point and interval estimation of relative risk for log-linear exposure-response relations in meta-analyses of published ordinal categorical exposure-response data have been proposed. The authors compared the results of a meta-analysis of published data using each of the 2 methods with the results that would be obtained if the primary data were available and investigated the circumstances under which the approximations required for valid use of each meta-analytic method break down. They then extended the methods to handle nonlinear exposure-response relations. In the present article, methods are illustrated using studies of the relation between alcohol consumption and colorectal and lung cancer risks from the ongoing Pooling Project of Prospective Studies of Diet and Cancer. In these examples, the differences between the results of a meta-analysis of summarized published data and the pooled analysis of the individual original data were small. However, incorrectly assuming no correlation between relative risk estimates for exposure categories from the same study gave biased confidence intervals for the trend and biased P values for the tests for nonlinearity and between-study heterogeneity when there was strong confounding by other model covariates. The authors illustrate the use of 2 publicly available user-friendly programs (Stata and SAS) to implement meta-analysis for dose-response data.
A higher calcium intake is still the primary recommendation for the prevention of osteoporosis, whereas vitamin D deficiency is often not addressed. To study the relative importance of dietary calcium intake and serum 25-hydroxyvitamin D [25(OH)D] status in regard to hip BMD, 4958 community-dwelling women and 5003 men 20 yr of age from the U.S. NHANES III population-based survey were studied. Calcium supplement users and individuals with a prior radius or hip fracture were excluded. We calculated standardized means for BMD by quartiles of sex-specific calcium intake for three 25(OH)D categories (<50, 50-74, and 75+ nM) among men and women, separately controlling for other important predictors of BMD. A higher calcium intake was significantly associated with higher BMD (p value for trend: p = 0.005) only for women with 25(OH)D status <50 nM, whereas calcium intake beyond the upper end of the lowest quartile (>566 mg/d) was not significantly associated with BMD at 25(OH)D concentrations >50 nM. Among men, there was no significant association between a higher calcium intake beyond the upper end of the lowest quartile (626 mg/d) and BMD within all 25(OH)D categories. Among both sexes, BMD increased stepwise and significantly with higher 25(OH)D concentrations (<50, 50-74, 75+ nM; p value for trend: women < 0.0001; men = 0.0001). Among men and women, 25(OH)D status seems to be the dominant predictor of BMD relative to calcium intake. Only women with 25(OH)D concentrations <50 nM seem to benefit from a higher calcium intake.
Introduction of innovative biocatalytic processes offers great promise for applications in green chemistry. However, owing to limited catalytic performance, the enzymes harvested from nature's biodiversity often need to be improved for their desired functions by time-consuming iterative rounds of laboratory evolution. Here we describe the use of structure-based computational enzyme design to convert Bacillus sp. YM55-1 aspartase, an enzyme with a very narrow substrate scope, to a set of complementary hydroamination biocatalysts. The redesigned enzymes catalyze asymmetric addition of ammonia to substituted acrylates, affording enantiopure aliphatic, polar and aromatic β-amino acids that are valuable building blocks for the synthesis of pharmaceuticals and bioactive compounds. Without a requirement for further optimization by laboratory evolution, the redesigned enzymes exhibit substrate tolerance up to a concentration of 300 g/L, conversion up to 99%, β-regioselectivity >99% and product enantiomeric excess >99%. The results highlight the use of computational design to rapidly adapt an enzyme to industrially viable reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.